Generator Breaker Failure Applications

Christopher Dall, Dennis Tierney

Calpine Corporation
Contents

- Overview of Standards discussing breaker failure for generator applications
- Case studies
 - CT location
 - Flashover protection
 - Noise and instantaneous re-trip
 - Breaker lockouts
 - Current detectors (exciters online or offline)
Overview of BF for generator applications

- Two main standards to consider:
 - IEEE Std C37-102
 - IEEE Std C37-119
- Breaker failure has two classifications:
 - Failure to Trip (e.g. mechanical issues)
 - Failure to Clear (e.g. loss of dielectric, flashover)
Overview of BF for generator applications

• Other situations not classified as Breaker Failure (C37.119)
 – Loss of dielectric
 – Contact flashover

• Given the potential damage to a generator these situations should be considered in a breaker failure scheme.
Minimum fault current scheme (C37-119)
Overview of BF for generator applications

Flashover protection scheme (C37-102)

Breaker open

GSU XO Bushing Current Detector

Generation Protective Trip
Breaker Failure Initiate

Breaker Closed

Current Detector

52b

50G

BFI

52a

50BF

Breaker Failure Timer

62

BFT

Breaker Failure Trip
Case 1 – Current transformer location

- Consider all possible fault locations...
Case 1 – Current transformer location

Generator Circuit Breaker CTs

Generator Line Side CTs

Generator Neutral CTs

50BF

50BF
Case 2 – Flashover protection

- After the BFI has de-asserted necessary to re-enable breaker failure scheme for flashovers

Diagram showing:
- GSU High Side Currents
- GSU Low Side Currents
- GSU Neutral Current
Case 2 – Flashover protection

*Current detector must be set sensitively enough to declare breaker failure
Case 2 – Flashover protection

• Consideration for flashover protection:

1. Use separate 52a and 52b contacts (i.e. do not invert 52a)
2. Implement a 52 contact disagreement scheme
3. Ring bus and breaker and a half schemes should require both 52b contacts to enable
 • Susceptible to tripping for transmission LG faults
Case 3 – Noise on Breaker Failure Initiate

- For latched BFI signals or instantaneous re-trips, noise can cause nuisance tripping.
Case 3 – Noise on BFI and instantaneous re-trip

*62BFI + 62BF = total breaker failure time
Case 4 – Circuit breaker lockouts

- Circuit breakers may have alarms which will block them from opening
 - Low spring charge
 - Low gas (SF6) pressure
- In the event of a protective trip we must declare a breaker failure if we know the circuit breaker is blocked from opening.
Case 4 – Circuit breaker lockouts
Case 5 – Current detector pickup

- Depending on the system conditions when the generator circuit breaker is required to open the currents can vary drastically
 - System fault
 - Problem at minimal load
- If the breaker fails and the turbine and exciter have been tripped the generator will be motored potentially causing serious damage to the rotor, stator and turbine.
Case 5 – Current detector pickup

- Example of unbalanced currents on generator after breaker failure
Case 5 – Current detector pickup

GSU High Side Currents
- $I_a := (I_1 + I_2 + I_0) \cdot I_{bsys}$
- $I_b := (I_1 \cdot a^2 + I_2 \cdot a + I_0) \cdot I_{bsys}$
- $I_c := (I_1 \cdot a + I_2 \cdot a^2 + I_0) \cdot I_{bsys}$

GSU Neutral Currents
- $I_{X0} := 3 \cdot I_0 \cdot I_{bsys}$

GSU Low Side Currents
- $I_A := (I_1 \cdot (1 \angle -30^\circ) + I_2 \cdot (1 \angle 30^\circ)) \cdot I_{base}$
- $I_B := (I_1 \cdot a^2 \cdot (1 \angle -30^\circ) + I_2 \cdot a \cdot (1 \angle 30^\circ)) \cdot I_{base}$
- $I_C := (I_1 \cdot a \cdot (1 \angle -30^\circ) + I_2 \cdot a^2 \cdot (1 \angle 30^\circ)) \cdot I_{base}$

I_{bsys} – base current on system voltage
I_{base} – base current on generator voltage
Case 6 – Detection with exciter online

- If the exciter remains online after the failed GCB is opened then the current magnitudes can be undetectable on the GSU high voltage side
Case 6 – Detection with exciter online

Minimum Pickup for 50BF in switchyard relay

Measured current

GCB Trip Signal

SWYD CB Opens

Current (referred to 18 kV)

Time

A (18 kV @gen)

A (345 kV @SWYD)

Min 50BF Pickup

Measured current

GCB Trip Signal

SWYD CB Opens

Current (referred to 345 kV)
Case 6 – Detection with exciter online

Measured current

Minimum Pickup for 50BF in switchyard relay
Case 6 – Detection with exciter online

Reverse power element pickups

GCB Trip Signal

SWYD CB Opens

<table>
<thead>
<tr>
<th>Time</th>
<th>Generator MW/MVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>2.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>3.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>4.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>5.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>6.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>7.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>8.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>9.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>10.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>11.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>12.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>13.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>14.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>15.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>16.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>17.0</td>
<td>Reverse power element pickups</td>
</tr>
<tr>
<td>18.0</td>
<td>Reverse power element pickups</td>
</tr>
</tbody>
</table>
Case 6 – Detection with exciter online

Reverse power element pickups

Graph showing generator MW/MVAR over time with markers for GCB Trip Signal, Exciter Tripped, and SWYD CB Opens.
Case 6 – Detection with exciter online

52a/b Disagreement -> Reverse Power Timer 62RP
LCI Start 32
Reverse Power 52b
Breaker open

BFT
Breaker Failure Trip

62BF
Breaker Failure Timer
Conclusions

• Locate Current transformers on the circuit breaker

• Desensitize the scheme to noise

• Special considerations for flashover protection

• Current detectors based on motoring events

• Use of reverse power element to detect failure
Conclusions

• Power plant operators should have defined procedures in the event that a breaker failure of a GCB goes undetected by the protection.