Fracture and Fatigue Properties of Seriously Damaged Steel Bridge Structural Members Repaired through Heat-Straightening

Kaiyuan Liu, PhD, PE
Parsons Brinkerhoff in Seattle, email: liuk@pbworld.com

David Mukai, PhD, Associate Professor
University of Wyoming, email: dmukai@uwyo.edu
Outline

• A brief introduction of heat-Straightening
 - history, how it works, concerns...
• Current research and engineering practices
• Fracture properties of heat-straightened steel plate w/ weak-axis damage
 - methodology, results and discussions
• Conclusions
Brief History

• First publication: 1938
• Into 1980s: half of USA states still didn’t allow heat-straightening (for bridge)
• 1970s to 2000s: research into basic material properties
How it works-the V-heat

Mukai
How it Works

V-heat starts at the tip, temperature below transition temperature, below 650 C
How it Works

The cool material to the sides constrains expansion

Mukai
How it Works

The material only expands through the thickness
How it Works

As it cools, it contracts through the thickness as well as across the width.
How it works - line heats

Schematic of weak-axis damage repair with a jacking force

Mukai
Combination of...
Concerns...

• Heat-straightening may be detrimental to material properties
• Limit of applying heat-straightening not very clear
• Engineers occasionally noticed cracks in heat-straightened steel members…
 - lack of extensive research in fracture
Current Practices -
Parameters

• 1st parameter:
 Degree of damage or strain ratio

• Total angle change across damaged zone

\[\phi_d = \theta_L + \theta_R \]
• Strain ratio, μ,
 Ratio of maximum strain to yield strain

\[\varepsilon = \frac{Y_{\text{max}}}{R} \]

\[\mu = \frac{\varepsilon}{\varepsilon_y} = \frac{R_y}{R} \]

Where R_y is curvature at yield
• 2nd parameter:
 External restraint, further restrain expansion or, called jacking ratio, j

\[
j = \frac{M}{M_p} \quad M_j, \text{bending moment due to jacking force}
\]
\[
M_p, \text{plastic bending moment capacity}
\]

• Expedite the repair
 (j<50%, Fy reduced by 50% at 600 C)
Current Practices - Limit

- Strain ratio less than 100
- Jacking ratio less than 50%
- Unknowns: Fracture behavior?
 - What about $\mu > 100$?
 - $j > 50\%$, up to 90\%?
Project Objectives

- Simulate steel girder damage and repair
- Investigate steel material properties that relevant to fracture
- Further quantify allowable limits of repair and provide more guides for heat-straightening.
Methodology

- Damage and Repair
- Coupons (μ up to 200, j up to 90%)
- Tensile & CVN
- J-R (including fatigue pre-cracking)
Damage and Repair

Heat-straightening repair setup (damage along weak axis)
Coupon Extraction

Coupon extraction scheme for weak-axis specimens.
CVN Toughness

CVN tester and sample.
Tensile Tests

Tension test specimen.
J-R Testing

J-integral test specimen.

Western Bridge Engineers' Seminar 2013
What is J?

- A parameter characterizing fracture toughness for EPFM
- Energy release rate, crack tip stress and strain condition
- Equivalent to “K” for LEFM
- J-Resistance curve

![Diagram showing J, JR, Jc, crack initiation, crack blunting, and stable crack growth]

Western Bridge Engineers’ Seminar 2013
J-Integral

A path-independent line integral around the crack tip

\[J = \int_{\Gamma} \left(W \, dy - T_i \frac{\partial u_i}{\partial x} \, ds \right) \]
How to measure J?

- Multiple specimens with different starting crack lengths.
- Single specimen and measure crack length as you go (ASTM E1820)
Test Set-up
Fatigue Pre-cracking

- Assumption of Fracture Mechanics
 “infinitely sharp” crack tip….
- Ensure valid J-R results.
- Select fatigue load and record cycles until initial pre-crack length is reached
CVN vs. Temperature, Weak Axis, $\mu = 65$
CVN vs. Temperature, Weak Axis, $\mu = 150$
CVN vs. Temperature, Weak Axis, $\mu = 200$
Tensile Tests

Stress vs. Strain for original and unrepaired specimens (A36)
Stress vs. Strain for weak axis, $\mu = 197$, $j = 90\%$
Yield Strength

The higher the strain ratio, the more sensitive to jacking ratio.
J-R curves for weak-axis $\mu = 65$
J-R curves for weak-axis $\mu = 150$
J-R curves for weak-axis $\mu = 200$
Fatigue Findings...

- The same pre-cracking length to be reached
- Fatigue pre-cracking load varies \(P_f = \frac{0.5Bb_0^2\sigma_y}{S} \)
- Recorded loading cycles decreases with \(\mu \) (not an evidence of fatigue resistance reduction though)
- Paris law expression \(\frac{da}{dN} = C\Delta K^m \)
Typical fatigue crack growth in metals

Larger m, faster crack growth

LOG da/dN vs. LOG \Delta K

Threshold

Fracture

Typical fatigue crack growth in metals
Crack growth curves from weak-axis J-Integral pre-cracking

\[\frac{da}{dN} = 3.6 \times 10^{-10} (\Delta K_i)^{3.0} \]

Higher \(\mu \), lower fatigue resistance; no obvious effect from \(j \)

Ferrite-pearlite steel
Conclusions
- Weak Axis Repair -

• Fracture and fatigue resistance decreases with increasing strain ratio.
• Strain ratios larger than 150 should not be heat-straightened.
• For strain ratios larger than 65, use caution for fracture critical members or non-fracture critical members with extremely low service temperature

• A higher jacking ratio (90% in place of 50%) can be used for strain ratios less than 65, but not recommended for higher strain ratios.