Sellwood Bridge
Final Design of the Main River Crossing Arch Bridge

Presenters:
Ian Cannon, P.E., Multnomah County
Eric Rau, P.E., T.Y. Lin International
Mike Lopez, P.E. S.E., T.Y. Lin International
Agenda

• Sellwood Site Background
• Bridge Replacement Project
• Bridge Type Selection
• Bridge Design Overview
• Construction Updates
Sellwood Site Background
Ferry at Spokane St

Sellwood Bridge
History

- Bridge opened 1925
- West approach moved 3ft by 1960
- Loads restricted in mid 1980’s
- Large cracks discovered in 2003
- “Band aids” installed
- Loads further restricted 2004
- NEPA process started in 2006
Issues

- West end slope instability
- Buses / trucks restricted
- General deterioration
- Bridge not designed for earthquakes
- Narrow lanes, no shoulders
- Narrow sidewalk
- No bike facilities / poor connections
- Tight turns at west end
Bridge Replacement Project
Project Team

• Agencies
 – Multnomah County
 – City of Portland
 – Oregon Department of Transportation
 – Federal Highway Administration

• Consultants
 – T. Y. Lin International, Prime Design Firm
 – CH2M Hill, Lead Subconsultant
 – Cornforth Consultants, Landslide Mitigation Consultant
 – Safdie Rabines Architects
 – David Evans and Associates, Owners Rep

• Contractor
 – Slayden/Sundt Joint Venture
Project Information

• Overall budget - $307.5 million
• About 20% complete construction
• Utilizing CM/GC delivery method
• Traffic on new span – Summer 2015
• East approach/OR 43 interchange complete – Summer 2016
CM/GC Decision Factors

- Cost
- Technical complexity
- Design developing
- ROW acquisition complex
- Schedule
- Risk
- Equity
- Sustainability
- Public involvement
Bridge Type Selections
Selection Process

• Conducted in 2010
• 12 bridge types evaluated
• 9 criteria scored in a matrix including:
 – Cost
 – Construction risk
 – Environmental impact
 – Aesthetics
• Public involvement: CAC ⇒ PSC ⇒ BCC
Bridge Type Selection

- Box Girder
- Delta Frame
- Deck Arch
- Through Arch
- Extradosed
- Cable-Stayed
Concrete Box Girder
Concrete Deck Arch
Steel Deck Arch
Architectural Features

Structural Lighting
Pedestrian Belvederes

Architectural Features
Architectural Features

Enhanced Protective Fencing & Street Lighting
Architectural Features

Gateway Art
Bridge Design Overview
Bridge Project Plan and Elevation

1977’-6”
Main Span Plan and Elevation

1275′-0″
Typical Arch Section

- Steel Girders
- Concrete Deck
- Steel Spandrel Cap Beam
- Bearings
- Steel Spandrel Column
- Arch Rib
- Arch Rib Brace
Structural Steel

- ASTM A709, Grade 50W structural steel
- 10 Million lbs
- ASTM A 325 and A490 Type 3 high-strength bolts

Sub Contractors
- Fabricator: Thompson Metal Fab Vancouver, WA
- Erector: Carr Construction Portland, OR
Arch Rib

- Arch Rib Box Section
 - Web Depth of 70” with plates ranging from 1.5” to 2.0”
 - Flange Width of 54” with plates ranging from 2.0” to 3.0”
Spandrel Columns

- Expansion Spandrels
- Fixed Spandrels
- Expansion Spandrels
Spandrel Columns

• Spandrel Column Boxes
 • Out-to-out: 3’-6” x 3’-0”
 • Plate thickness varies 1.25” to 2”
Spandrel Cap Beam

- Spandrel Cap Beams
 - Bolted built-up box members
 - 5’-0” depth x 3’-4” wide
Future Streetcar Provisions
Future Streetcar Provisions

Future Trackway Section

Luminaire Supports
Arch Springing Assembly
Arch Springing Assembly

INITIAL STAGE
Cast anchorage assembly, anchor rods, and bearing plate into footing.

INTERMEDIATE STAGE
Install Arch Rib and base plate into temporary pinned condition, using pin plate.

FINAL STAGE
After constructing sidewalk and bridge rail (end of Stage 111, See Dwg. nos. 0010–00 thru 0014–00):

1. Grout space between bearing and base plates.
2. Tension anchor bolts and grout ducts.
West Shore Pier
River Pier
Springing/Wall/Column/Strut Interface

CURVE "A"
R = 205.94'
Δ = 10°52'23"
T = 19.80'
L = 39.08'

CURVE "B"
R = 205.20'
Δ = 11°02'50"
T = 19.84'
L = 39.56'

* Note: Exterior side to and ce Arch Rib
Pier Wall Plan
Box Caisson Section

Courtesy of McGee Engineering Inc.
• A706 Grade 80 used for all drilled shaft reinforcing
• Permanent casing provided at Bents 4 and 5
• Slope inclinometers installed in (2) Bent 3 shafts
3D Rebar Modeling
3D Rebar Modeling
3D Rebar Modeling
Analysis and Design Criteria

LARSA 4D Global Analysis Model
Design Criteria

• **Seismic:**
 - Minimal damage allowed in a 500-year earthquake
 - Collapse is prevented in a 1000-year earthquake
 - Allowable material strains are defined and enforced for these events
 - Structure response is calculated via enveloped suites of site-specific acceleration response spectra and nonlinear static push analyses.

• **Landslide:**
 - Mitigation measures are being constructed to prevent movement in service conditions.
 - Finite element analysis was performed using scaled time histories of four earthquakes to predict soil-structure interaction with the proposed structure and mitigation in place.

• **Vessel Collision:**
 - Bridge design for vessel impact
 - Controlling vessel was the Portland Spirit, 150-ft long, 420 long ton

• **AASHTO Live Load:**
 - Bridge designed for trucks and pedestrians; conditions were evaluated with complete removal of sidewalks.

• **Streetcar Live Load:**
 - Streetcar vehicles were substituted into load combinations for HL-93 trucks.
Main span elements are subject to mass placement requirements and conformance with ACI 207.

An engineered thermal control plan is required. A performance-based approach to controls of concrete peak temperatures, temperature gradients, and induced cracking is acceptable.
Construction Update
First Shaft Installation at Bent 6
First Shaft Installation at Bent 5
First Shaft Installation at Bent 5
East Abutment, First Stage
East Approach Columns, First Stage