A Constructible Bridge Bent Designed to Re-center after an Earthquake.

John Stanton

Marc Eberhard, Travis Thonstad, Jeffrey Schaefer, Bryan Kennedy

Dept. of Civil and Environmental Engineering
University of Washington

2013 Western Bridge Engineers’ Seminar
Acknowledgments

- National Science Foundation
 - Award Number: 1207903
- Federal Highway Administration
- Pacific Earthquake Engineering Research Center
- Washington State DOT
- Valle Scholarship Foundation
Conventional Bridge Bent

- Cast-in-place concrete construction
Conventional Bridge Bent

- Slow to construct
Conventional Bridge Bent

- Susceptible to seismic damage
Conventional Bridge Bent

- Post-earthquake residual displacements
Proposed Improvements

- **Accelerate Construction**
 - Use precast components
 - (Connections are critical)

- **Reduce column damage**
 - Use rocking column approach
 - Columns rock as rigid bodies
 - Damage significantly reduced

- **Minimize residual displacements**
 - Use unbonded prestressing
Proposed Strategy

Precast Columns, Cap Beams and Girders

Confined Rocking Interface

Unbonded Pretensioned Columns

“Socket” Footing Connection
Accelerated Construction
Accelerated Construction
Accelerated Construction
Accelerated Construction
Accelerated Construction
Accelerated Construction
Field Deployment
(non-prestressed system)

Socket Connection

Cap-Beam Connection

I5, Grand Mound Bridge Replacement Project, 2012
Earthquake Damage
Sub-Assembly Tests
Sub-Assembly Tests
RC column after 10% drift
Rocking column after 10% drift
Post-Earthquake Residual Displacements
Precast, Pretensioned Column

- Bonded strand
- Unbonded strand
- Bonded strand
- Locally unbonded rebar
- Bonded rebar
- Discontinuous rebar
Moment-Rotation Behavior

Moment-Rotation

Strand + Rebar = Total
Moment-Rotation Behavior

Strand + Rebar = Total
Moment-Rotation Behavior

Strand + Rebar = Total

Moment-Rotation
Moment-Rotation Behavior

Strand + Rebar = Total

Moment-Rotation
Moment-Rotation Behavior

Moment-Rotation

Strand

+

Rebar

=

Total
Moment-Rotation Behavior

Moment-Rotation

Strand + Rebar = Total
Moment-Rotation Behavior

Moment-Rotation

Strand Rebar Total

+ =
Moment-Rotation Behavior

Moment-Rotation

Strand + Rebar = Total
Quasi-static Test Results

Moment vs Drift Ratio

Drift Ratio [%]
-15 -10 -5 0 5 10 15

Moment [kip-in]
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
Shaking table tests
(without steel confining tube at interface)
Shaking Table Test Results

- Peak drifts: about the same
- Residual drifts: smaller in Pre-T column.
Upcoming Tests

- Quasi-static test on top connection (UW, Sept 2013)
- Shaking table tests on 3-bent bridge (UNR NEES, Spring 2014)
Conclusions
Pre-tensioned bent system

- **Accelerated Construction**
 - Pre-tensioned bent system uses essentially the same connections as the precast (non-ps) system, which has been successfully implemented in the field.

- **Seismic damage:**
 - Negligible concrete damage even at 10% drift.
 - Rebar fracture at approx. 5% to 6% drift.

- **Residual displacements:**
 - Much smaller than with RC columns
 - Approx. $0.1\delta_{peak}$.
Thank You