NATIONAL BRIDGE INSPECTION PROGRAM
COMMENDABLE PRACTICES

Portland, Oregon
April 23-25, 2013

Larry D. O’Donnell, P.E.
Sr. Structural Engineer
Federal Highway Administration
Office of Technical Services – Resource Center
National Bridge Inspection Program

• 1 National Bridge Inspection Standard
 – statewide inspection policies/procedures
 – quality assurance/quality control
 – preparation/maintenance of a bridge inventory
 – inspections, reports, and load ratings

• 20 Federal agencies
• 52 State Transportation Departments
• 607,380 highway bridges
Commendable Practices

- Organization
- Policies & Procedures
- QC/QA
- Bridge Inventory
- Reports
- Load Rating
- Inspections
Organization

- State bridge inspection, repair, design and management aligned in same functional section
- Field inspection teams that report to personnel under direct supervision of the NBIS Program Manager
- Inspection teams with more than 2 members for team leader development and succession planning
- Local Bridge Advisory Committee
Policies & Procedures

- Comprehensive bridge inspection manuals that are regularly updated and easily accessible (web, inspection software)
Policies & Procedures

• Use of extended inspection intervals in accordance with the NBIS
 – FHWA Technical Advisory T 5140.21
• Electronic documentation of follow-up actions, prioritization, tracking and reporting
Policies & Procedures

• Electronic document management systems with accessible bridge record information
• Utilization of technologies for remote monitoring of scour critical bridges
• Use of rope climbing techniques by state inspectors and refresher training

April 2013
QC/QA

- Comprehensive documentation of QC/QA procedures for State, local agencies and consultants
- Regularly scheduled meetings of bridge inspection staff (annual, quarterly, bi-monthly)
- Annual refresher training
QC/QA

• Regularly scheduled compliance reviews of other public agencies by State DOT
• Rotation of inspection teams, state and consultants
• Independent field review
QC/QA

- Independent QC review of each report
- Use of statistical sampling for QA reviews
 - Standard ANSI/ASQ Z1.4 Sampling Procedures
- Documentation of QA review results
QC/QA

• Electronic documentation and management of inspection personnel education, certification, experience and training by Program Manager

• Inspection of reference bridges for refresher training and certification
Bridge Inventory

• Database web-interfaces to enter, maintain and view inventory and condition data with reporting capabilities
Bridge Inventory

• Customized electronic data checks beyond FHWA Edit/Update program
• Use vehicle mounted laser to obtain vertical clearances at highway speeds
Reports

• Regularly scheduled bridge inspection status reports either monthly or quarterly
• Standardized reports for all inspection types whether by state, local or consultant
• Standard timber boring report
Reports

• Use of electronic photo management system
• Measure and plot channel cross-sections upstream and downstream sides of bridge for each inspection
• Inspection reports maintained and accessible electronically

April 2013
Load Rating

- Comprehensive documentation of load rating policy and procedure
- Clear authority to post and close bridges when needed
- Load rating summary form
Load Rating

- Annual state-wide posting and closure reviews
- Registered structural engineer performs site inspection of all poor bridges for load re-rating
- Review of load rating analysis following each bridge inspection
Load Rating

• Partner with local University to complete load ratings and develop student experience
Inspections

• Perform hands-on inspection for each routine inspection
• All inspections performed by state forces or by consultant contracts administered by the state
• Team leaders are registered professional engineers
Inspections

• Electronic field collection of data using tablet PC, laptop or PDA
 – Report essentially complete before leaving the bridge
Inspections

• State climb-teams for FC bridge inspection
• Deck inspection on heavily congested urban highways using van-mounted video cameras
• Use of pole mounted cameras to supplement visual inspections above and/or below water
Inspections

• Use of phased array ultrasonic testing for detecting and quantifying crack indications in steel members on fracture critical bridges
• Ultrasonically test pins, hangers and eyebars for each inspection
• Check horizontal and vertical clearances during each inspection
Inspections

• Element level bridge inspection data collection with pictorial field manuals
 – AASHTO CoRe Elements
 – AASHTO NBEs/BMEs
Element Level Bridge Inspection

City of Phoenix

AASHTO CoRe element data
New AASHTO NBE/BME data

45 States & FHWA-FLHD

April 2013
Element Level Bridge Inspection

- Legislation (MAP-21)
- Elements
- Element Level Data Collection
Legislation

• National Bridge and Tunnel Inventory and Inspection Standards Program
 – Statutory citation(s): MAP-21 §1111; 23 USC 144
 • Each State and Federal agency – within 2 yrs. of enactment, report element level data on bridges on the NHS to the Secretary as each bridge is inspected
 • The Secretary – study cost-effectiveness, benefits, feasibility of collecting for non-NHS bridges

Fact Sheet - http://www.fhwa.dot.gov/map21/bti.cfm
Legislation

• Anticipated timeline for element level data reporting to FHWA
 – October 1, 2012: Enactment
 – October 1, 2014: Year 2
 • Data is expected to be collected during inspections of NHS bridges that are due for inspection in Oct 2014 and after
 – April 1, 2015: First submittal of data to FHWA
Elements

 – National Bridge Elements (NBEs)
 – Bridge Management Elements (BMEs)
 – Agency Developed Elements (ADEs)
 • NBE or BME sub-elements
 – ADE-NBE or ADE-BME
 • ADE
 – Defect Flags

Elements

• Each element has...
 – Description
 – Quantity calculation
 – Condition state definitions
 – Feasible actions
 – Element commentary
 – Element definitions
Elements

• Each element has four defined condition states (CS)

• General condition state descriptions
 – CS 1 (Good)
 – CS 2 (Fair)
 – CS 3 (Poor)
 – CS 4 (Severe – load capacity implications)
Elements

- AASHTO NBEs and BMEs have pre-defined condition state definitions
 - Defect description and severity
- Element quantities are distributed to one or more of the four condition states depending upon the condition of the element

<table>
<thead>
<tr>
<th>Element</th>
<th>Total QTY</th>
<th>Units</th>
<th>CS-1 QTY</th>
<th>CS-2 QTY</th>
<th>CS-3 QTY</th>
<th>CS-4 QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 - Reinforced Concrete Deck</td>
<td>8663</td>
<td>SF</td>
<td>8085</td>
<td>543</td>
<td>35</td>
<td>0</td>
</tr>
</tbody>
</table>
Elements - NBES

- Primary structural members of bridges necessary to determine the overall condition and safety of the primary load carrying components
- Descriptions, quantity measurements and condition state definitions expected to remain consistent from agency to agency
Elements - NBEs

• FHWA plans to collect data for all NBEs
 – Decks/Slabs – area (sq. ft.)
 – Superstructure – length (ft.), each
 – Substructure – length (ft.), each
 – Culverts – length (ft.)
 – Bearings – each
 – Bridge Rails – length (ft.)
Elements - BMEs

- Elements such as joints, wearing surfaces, protective coatings and approach slabs typically managed by agencies utilizing systematic preventive maintenance strategies and BMS.
Elements - BMEs

• Conditions of element protective systems are assessed using separate elements
 – Wearing Surfaces
 – Steel and Concrete coatings
 – Deck/Slab reinforcing steel (coatings, cathodic)
Elements - BMEs

- FHWA plans to collect data for these BMEs
 - Joints – length (ft.)
 - Wearing surfaces – area (sq. ft.)
 - Steel protective coatings – area (sq. ft.)
 - Concrete protective coatings – area (sq. ft.)

- Descriptions, quantity measurements and condition state definitions expected to remain consistent from agency to agency
Elements - ADEs

• Agency Developed Elements (ADEs) can be sub-elements of NBEs or BMEs
 – ADE-NBE
 – ADE-BME

• Or agency defined without ties to the AASHTO Guide Manual elements
 – ADE
Elements - ADE-NBE

- Must have 4 Condition States
 - Good (1), Fair (2), Poor (3), Severe (4)
- Condition state and defect definitions must remain consistent between the NBE and the ADE-NBE sub-element
- Element must be aggregated back together with NBE (linked to NBE) for reporting
- 108 Steel Beam/Girder, End (NBE 107)
Elements - ADE-BME

• Must have 4 Condition States
 – Good (1), Fair (2), Poor (3), Severe (4)
• Would have the same condition state and defect definitions as BME
• Element musts be aggregated back together with BME (linked to BME) for reporting
• 516 Steel Protective Coating, Lead (BME 515)
Element Level Data Collection

Elevation

Typical Section

Element #: xxx
Element Level Data Collection

<table>
<thead>
<tr>
<th>Element</th>
<th>Total QTY</th>
<th>CS-1 QTY</th>
<th>CS-2 QTY</th>
<th>CS-3 QTY</th>
<th>CS-4 QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 - RC Deck (SF)</td>
<td>16217</td>
<td>0</td>
<td>16000</td>
<td>217</td>
<td>0</td>
</tr>
<tr>
<td>510 - Wearing Surface (SF)</td>
<td>15783</td>
<td>15083</td>
<td>500</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>304 - Open Joint (LF)</td>
<td>158</td>
<td>100</td>
<td>58</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>331 - RC Bridge Railing (LF)</td>
<td>412</td>
<td>360</td>
<td>40</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>107 - Steel Beam/Girder (LF)</td>
<td>2054</td>
<td>1044</td>
<td>1000</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>515 - Steel Protective Coating (SF)</td>
<td>15728</td>
<td>0</td>
<td>5628</td>
<td>10000</td>
<td>100</td>
</tr>
<tr>
<td>310 - Elastomeric Bearings (EA)</td>
<td>40</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>205 - RC Columns (EA)</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>210 - RC Pier Wall (LF)</td>
<td>54</td>
<td>44</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>215 - RC Abutment (LF)</td>
<td>182</td>
<td>140</td>
<td>30</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>234 - RC Pier Cap (LF)</td>
<td>150</td>
<td>105</td>
<td>30</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>
Element Level Data Collection

- Proposed data items to be collected by FHWA for each NHS bridge inspection
 - Element Number (EN)
 - Element Parent Number (EPN)
 - Total Element Quantity
 - Condition State 1 Element Quantity
 - Condition State 2 Element Quantity
 - Condition State 3 Element Quantity
 - Condition State 4 Element Quantity
Element Level Data Collection

Example Data Set for 1 Bridge

<table>
<thead>
<tr>
<th>State Code</th>
<th>Str. #</th>
<th>Insp. Date</th>
<th>Insp. Type</th>
<th>EN</th>
<th>EPN</th>
<th>Total QTY</th>
<th>CS-1 QTY</th>
<th>CS-2 QTY</th>
<th>CS-3 QTY</th>
<th>CS-4 QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>12</td>
<td></td>
<td>16217</td>
<td>0</td>
<td>16000</td>
<td>217</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>510</td>
<td>12</td>
<td>15783</td>
<td>15083</td>
<td>500</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>304</td>
<td></td>
<td>158</td>
<td>100</td>
<td>58</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>331</td>
<td></td>
<td>412</td>
<td>360</td>
<td>40</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>107</td>
<td></td>
<td>2054</td>
<td>1044</td>
<td>1000</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>515</td>
<td>107</td>
<td>15728</td>
<td>0</td>
<td>5628</td>
<td>10000</td>
<td>100</td>
</tr>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>310</td>
<td></td>
<td>40</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>205</td>
<td></td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>210</td>
<td></td>
<td>54</td>
<td>44</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>215</td>
<td></td>
<td>182</td>
<td>140</td>
<td>30</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>14277</td>
<td>11-04-2012</td>
<td>A</td>
<td>234</td>
<td></td>
<td>150</td>
<td>105</td>
<td>30</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>
Summary

• Maximize your bridge inspection program efficiency and effectiveness
 – Obtain, train and retain qualified personnel
 – Regularly assess your program
 • Level of quality in \(\rightarrow \) impacts level of quality out
 – Utilize extended inspection intervals
 – Utilize readily available technologies
 – Network with peers to share and learn
Enjoy the rest of your conference!